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The interaction of a pair of spiral waves with different independent rotation frequencies is studied. In a very
large frequency mismatch searching region, we observe three different pattern formation phenomena:sad
phase-synchronization-induced invasion under a relatively small frequency mismatch, i.e., the spiral wave with
slower frequencyslonger periodd is swept away by a traveling wave, which is induced and phase synchronized
by the faster spiral wave;sbd the coexistence of two spiral waves at sufficiently large parameter mismatch; and
scd an intermediate state, a non-phase-synchronous invasion, that is, similarly the slower spiral wave is swept
by an approximate planar wave, whose frequency, however, is intermediate between those of the faster and
slower waves. A point-source model is studied to analyze all these phenomena in a unified way.
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Spiral waves are probably the most intriguing patterns in
spatially extended systemsf1–5g. They have been observed
in diverse systems, including biological systemsssuch as the
cardiac muscle tissue and aggregating slime-mold cellsd,
physical systemsssuch as CO oxidation on platinumd, and
the chemical Belousov-Zhabotinsky reaction, etc. Spiral
waves have been actively investigated for several reasons,
one of which is their potential clinical relevance to cardiac
arrhythmias, especially ventricular fibrillation, which can in-
duce clinical death in only one minute and is the leading
cause of sudden heart death in industrialized countries. In
general, most studies in these fields are focused on the for-
mation mechanisms, the instability of spiral wavessmeander-
ing spirals, or different breakup scenariosd f6–8g, the re-
sponse of spiral waves under all kinds of external
perturbationsf9–11g, such as the modulation by a periodic
force pulse, localsand globald feedback, electric fields, and
noise, and the interactions of spiral wavesspattern selectiond.
Clearly the motivations of all of these studies are closely
connected with the possible application and control of spiral
wavesf10,11g.

A specific question about the interaction of multiple spiral
waves—what will happen if several spiral waves are put into
one spatial domain—has aroused great interest continuously
in the pattern formation communityf12–23g. It is a basic
question and is also of significance in our understanding of
spiral wave formation in chemical medium, cardiac tissue,
etc. Until now, it has been well accepted that the interaction
between several spiral waves with different frequencies often
leads to the conversion of the slower spiral wave to the faster
frequency, and, thus, the domination of the fastest spiral
wave in the whole space. This pattern has been extensively
observed in various systems, such as an active chemical me-
dium f17g, a two-dimensional excitable medium with a pa-
rameter gradientf19g, self-interactions of a scroll ring in
three dimensionsf19g, and cardiac tissuef22g. More specifi-

cally, two distinct phases of the interaction including un-
winding and drifting states have been observedf19g. Initially,
the spiral with the faster rotation period intrudessunwindsd
into the domain of the slower one; after the unwinding, the
wave fronts from the faster spiral interact directly with the
center of rotation of the slower one, producing a drifting of
the slower one to move out of the observed domain. There-
fore, the unwindingsor invadingd velocity and the drifting
speed are the two most important characteristics in the inter-
actions. In an early seminal paperf17g, Krinsky and Agladze
pointed out that the underlying mechanism of the invasion is
due to thesphased synchronization of autowave sourcessspi-
ral wavesd; that is, the spiral with the faster frequency can
cause the region in the vicinity of the interaction to be ex-
cited with its frequency, i.e.,sphased synchronized, and then
the action keeps on expanding to the entire region. As a
result, spiral waves with unequal frequencies cannot coexist
and the most rapid one survives. This point of view has
successfully explained the observed phenomena and a point-
source model based on this argument also approximately
gives a formula for the unwinding time. Recently, the effect
of weak inhomogeneity on spiral wave dynamics was studied
within the framework of the two-dimensional complex
Ginzburg-Landau equation description in a quasifrozen pa-
rameter regionf20,21g. Just as in an excitable medium, the
formation of a dominant spiral domain that suppresses other
spiral domains was observed in this type of oscillatory me-
dium.

Until now, to our knowledge, most studies only focused
on observations with small frequency mismatch, or weak in-
homogeneity, for example, the maximum frequency differ-
ence ratio is within a factor of 20% in Ref.f20g. Hence,
some interesting questions involving the interaction of spiral
waves are still not answered: What will happen if the fre-
quency mismatch is very large? Can one spiral wave destroy
another as long as its frequencysperiodd is largerssmallerd?
Is phase synchronization the unique mechanism for the faster
spiral destroying the slower one? In this paper, we intend to
address these problems.*Electronic address: mzhan@chem.utoronto.ca
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Our studies are based on the two-dimensional complex
Ginzburg-Landau equationsCGLEd,

]A

]t
= msx,ydA − s1 + iaduAu2A + s1 + ibd¹2A, s1d

which provides a universal description of extended systems
in the vicinity of a homogeneous Hopf bifurcation with the
complex variableAsx,y,td being the order parameter at the
bifurcation f1,5,20g. In the case of a homogeneous medium,
a andb are real constants. It is well known that in an appre-
ciable region of thesa ,bd parameter space, a spiral wave can
naturally form from fairly arbitrary small initial perturbations
from A=0. Here the scaling parameterm is chosen as a real
constant, and it can be set to unity by an appropriate rescal-
ing of Eq. s1d f20g through x→x/Îm, t→ t /m, A→ÎmA.
Directly we have the scaling relation for the two system
characteristics: the rotation frequency and the wavelength of
the spiral waves,

vsmd = mv0,

lsmd = l0/Îm, s2d

wherev0 and l0 are for a single spiral wave atm=1 with
vsmd andlsmd for arbitrarym, correspondingly. For system
s1d, it is easy to derive the dispersion relation includingm,

vsmd = am + sb − adksmd2, s3d

whereksmd is the wave number of a planar wavef1,2,20g.
It has been pointed out that the lowest order effect of the

inhomogeneity is the dependence of the local frequency and
growth rate of excitation on spacef20g. In the present work,
a simple model is constructed with two stable spiral waves
having different scaling parameters in the left and right sides
of the domain, namely,msx,yd=ml for xøL, and msx,yd
=mr for x.L with the size of the mediumLx=2L and Ly
=L. In this rectangular region, the interaction of two parallel
spirals will be investigated. Without losing any generality,
a=−0.4 andb=−1.5, which are the typical values in the
normal outwardly rotating spiral wave regionf5,24,25g, are
chosen. In this paper, we mainly study systems with the
variation ofmr and a fixed left scaling parameterml =3. The
CGLE system is integrated using the explicit Euler method
with time stepDt=0.01, and the standard five-point approxi-
mation for the Laplacian operator with the space stepDx
=Dy=0.5. For each spiral wave, a 2563256 grid with no-
flux boundaries is utilized. The main computation procedure
is to form two stable spiral waves in the individual regions
first, which can be conveniently realized by vertically inter-
secting initial conditions, and then to remove the obstacle in
the middle of the computation domain and switch the inter-
action on. Our model here is constructed to maintain simplic-
ity and generality, so the results in this paper are expected to
be applicable to other more complex systems as well.

As a first example,mr =3.5, only a little larger thanml
=3, whose evolutions are depicted in Fig. 1, is selected. In
the initial time fFig. 1sadg, two separated spiral waves spon-
taneously form and the division between is quite even. In the
course of time, we observe that the right spiral wave excites

a traveling wavesapproximate planar waved with a fixed
wavelength, which is discernibly different from both the left
and right original spiral waves. Two processes of the inter-
action are very clear: unwindingfFig. 1sbdg and driftingfFig.
1scdg. In these figures, the tip trajectory of the left spiral is
indicated by a solid line, whereas the nearly quiescent tip of
the right spiral is denoted by stars. Ultimately, a stable pat-
tern is established, characterized by the slower spiral being
completely transformed to a traveling wavefFig. 1sddg.

The above reconfirms the observation that spiral waves
with unequal frequencies cannot coexist. We also compute
the eventual rotation frequencies of the left and right regions
having uniform values, denoted, respectively, by solid circle
and open square points in Fig. 2sad, as a function ofmsrd.
Figures 2sbd–2sdd are three enlarged fields focusing on the
specific regions. Actually, due to the regular motion of the
coupled sites, periodic or quasiperiodic, these are very easy
to measure. Here, we borrow a mature technique in the field
of chaotic phase synchronizationf26–28g and define the av-
erage frequencysrotation numberd of the spatial integration
points as

vsx,yd =Kdusx,yd
dt

L = lim
T→`

1

T
E

0

T

usẋ,yddt s4d

based on the phase definition of

usx,yd = arctanS ImfAsx,ydg
RefAsx,ydgD , s5d

where RefAsx,ydg and ImfAsx,ydg are the real and imaginary
parts ofAsx,yd, respectively. The counterclockwise direction
is viewed as the normal positive rotation. For regular rotation
of each computation point with a single cycling center as
analyzed in this paper, it works well. It has been mentioned
that the presence of a topological defectsthe spiral cored does
not pose any problems because the defect, whose phase is
not defined though, is located almost surely between the in-

FIG. 1. The time evolution of RefAsx,ydg at mr =3.5. ml =3 is
fixed throughout this paper.
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tegration lattice sitesf28g. In fact, vsx,yd of a single spiral
with homogeneous parameter sets shows the same single
magnitude with, however, the different sign as the spiral fre-
quency ofvsmd fin Eq. s3dg.

Figure 2sbd clearly shows that in the region of 1.5ømr
ø6.1, the frequencies of the two spatial parts coincide, i.e.,
global phase synchronization has been established. In par-
ticular, the end frequency of the coupled systems is decided
by the large one, and we see a huge jump not only in the
region of 3=ml ,mr ø6.1, but also in 3=ml .mr ù1.5. Note
that, for m=1, v0=0.4188, the dashed lines indicate the ini-
tial frequencies, the frequencies for the individual spiral
waves without coupling, which are located atvl =mlv0
=3v0 andvr =mrv0, respectively.

Now we may ask, what will occur ifmr stays out of the
phase synchronization region? With a similar qualitative be-
havior as Fig. 1, two phases of interaction, unwindingfFig.
3sbdg and drifting fFig. 3scdg, are exemplified formr =8.0.
Because of the large discrepancy of the two scaling param-
eters, the differences of the wavelengths and the variable
magnitudessdifferent gray valuesd between the two sides are
visible. In the end, the systems are built with two compo-
nents of patterns: the unchanged right spiral wave and an
approximate planar wave on the other sidefFig. 3sddg. Ac-
cording to the non-phase-synchronous feature in Fig. 2sad,
vr Þvl for mr =8.0, it seems very strange that the stable trav-
eling wave pattern in Fig. 3 is still possible. A closer look
fsee Fig. 2scd at 6.2ømr ,19.0 and Fig. 2sdd at 0.5,mr
ø1.4g clearly indicates that although the chosen frequency
of the invading wave is different from that of the faster spi-
ral, it is still a little larger than that of the slower one, which
will be invadedsdots are located above the dashed lines in

both subfiguresd. The two stars labels the two critical param-
eters.

So far we know that the frequency of the induced invad-
ing wave is crucial for its occupation of the slower spiral
domain. Several stable patterns for larger frequency differ-
ences,mr =19.0 for Fig. 4sad and mr =0.5 for Fig. 4sbd,
clearly confirm this point. Although the frequency difference
is so large and the intermediate region is so greatly influ-
enced by the coupling, two spiral waves definitely coexist
and the induced wave front with the larger frequency cannot
expand in the new territory. It should be stressed that here an
extremely long observation time 80 000scomparatively one
or two orders of magnitude longer than in Figs. 1 and 3d has
been adopted. Similar phenomena are found for much larger
mrsmr .19.0d or smallermrsmr ,0.5d. On the contrary, other
stable patterns with differentmr ,mr =1.0 fFig. 4scdg and mr

FIG. 2. sad The two end frequencies of the left and right sides in
the pattern,vl ssolid circlesd andvr stransparent squaresd versusmr.
sbd, scd, andsdd Three enlargements ofsad. In sbd, the quantities of
vl andvr coincide, which means the global phase synchronization
has been established. Inscd andsdd, non-phase-synchronization ap-
pears withvl Þvr. However, the wave invading phenomena have
still been observed as the frequency of the invading wave is a little
larger than that of the invaded spiral wave. The two critical values
sstarsd of sad are at the right side,mr =19.0 scd, and the left one,
mr =0.5 sdd.

FIG. 3. Similar to Fig. 1 atmr =8.0.

FIG. 4. The eventual stable patterns for different parameters:
mr =19 sad, 0.5 sbd, 1.0 scd, and 3sdd.
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=3.0fFig. 4sddg, show the left spiral wavesstill fasterd killing
the right spiral and the coexistence of two spiral waves with
the same frequenciessmr =ml =3.0d, respectively. The appear-
ance of a new small spiral wave near the center in Fig. 4sdd
is simply due to the topological defect between the two ini-
tial spirals.

It should be highlighted here that the values ofvl andvr
in Fig. 2 are the two asymptotic quantities ofvsx,yd in the
left and right sides, in whichvsx,yd has nearly uniform val-
ues. As an example, the frequency division line undermr
=8 fFig. 3sddg is exhibited in Fig. 5sad. It is a curve now and
it has shifted from the middle vertical dash line,x=L=128,
into the slow spiral wave domain. Specifically, the intersec-
tion position of this line withy=L /2=64, C, is chosen,
whose relation withmr is displayed in Fig. 5sbd. Unlike in
global phase synchronizationshomogeneous in the whole do-
main and without a divisiond in the phase-locking region, a
small expansion of the faster spiral to the slower onesdevia-
tion from the original division dashed line atx=L=128d is
seen everywhere even including the coexistence state region.
This indicates that, weaker than the global synchronization,
partial synchronization, characterized by a two-value distri-
bution shomogeneous in each partd and the extension of the
large frequency field, is established out to the phase-locking
region.

The stable patterns at differentmr tell us that frequency
locking is only a sufficient condition, not a necessary one,
for the formation of the invading wave. More generally, even
if the frequency of the induced invading wave is only a little
bit higher than that of the slower spiralsnot synchronous
with the faster oned, the expansion of the planar wave is still

possible. It is useful to illustrate this by studying the wave-
length of the established invading wave, shown by solid
circles in Fig. 6. The two solid lines are the theoretical values
for ll and lr without coupling. Here,l0=49.25,ll =l0/Î3
=28.44, andlr =l0/Îmr. In the synchronization region, the
wavelength of the invading waveli is smaller than bothlr
andll sexcept for the extreme pointmr =ml =3.0, li =lr =ll,
where the formation of invading wave is not possibled. In
fact, with the phase synchronization mechanismsvr =vld, it
is easy to predict the wavelength of the induced planar wave
through the dispersion relationfEq. s3dg—this is shown as
the dashed line, which fits the computational results very
well. It is well known that the minimum wavelengthlmin sor
maximum frequencyd sustained by a specific medium to emit
a wave is determined by the system parameters. Here indeed
lmin also controls the synchronization widthsthe phase-
locking parameter ranged. Outside of the synchronization re-
gion, the stable invading wave appears with a new aspect of
wavelength, i.e.,li is larger than that of the faster spiral
wave and smaller than that of the slower one. Two extreme
values aremr =19.0smr =0.5d in the right sleftd side sstars in
Fig. 6d. Here we should mention that for some other param-
eter setsfdifferent sa ,bdg, two phases without non-phase-
synchronous invasion have also been found. In principle, the
reason is that the coupled system does not have enough pa-
rameter range formr in the synchronization region to arrive
at lmin under the current competition status between the
growth powersmd, the strength of the local nonlinearitysad,
and the intensity of the spatial couplingsbd.

From the above discussion, we have obtained a clear
physical picture of the interaction between the two spiral
waves. To proceed further, it is crucial to investigate the
invading velocity quantitatively. Actually for an approximate
analysis with a point-source modelf17g it has been derived
with the form

V = ys1 − T1/T2d/2, s6d

whereT1,T2 are the periods of the spiral waves, andv is
the wave velocity. Obviously the wave velocities in different

FIG. 5. sad The frequency division line for two asymptotic fre-
quenciesvl andvr at mr =8 fFig. 3sddg. In fact, it is a curve. At each
side,vsx,yd has a homogeneous value. Specifically, the intersection
position of the division line withy=L /2=64,C, is chosen. Under
this parametermr .ml, the division line has been moved into the
slow spiral domain; thusC,L. sbd The divided positionC vs mr.

FIG. 6. The wavelength of the invading wave versusmr.
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media are not distinguished. Recently, in studies of several
spiral waves in the quasifrozen parameter region, the rela-
tionship of the domain wall velocitysthe same as the invad-
ing velocity in our paperd is given f20g by

V = sv1 − v2d/sk1 + k2d, s7d

wherev1 andv2 are the spiral frequencies,k1 andk2 are the
wave vectors, and the reference positive direction points to-
ward spiral 2. If the discrepancy betweenk1 and k2 is not
considered, Eq.s6d is recovered from Eq.s7d naturally.

We now know that a frequency difference of the spiral
waves cannot always induce the invasion. Thus, the expres-
sions in boths6d and s7d cannot explain the observations in
the entire parameter region. Here we restudy a point-source
model with the sketch map shown in Fig. 7. Just as in Ref.
f17g and the numerical experiment above, two spiral waves
are generated at the left and right sides, andT1,T2. The
essential point in the point-source model is that the two spi-
ral waves can be simplified as two-point sources situated at
the tip points 1 and 2, respectively, with emissions of planar
waves having the same wavelength and frequency as the spi-
ral waves. Indeed, if the two sources emit a first wave simul-
taneously, these waves will collide and annihilate midway
between the sources, illustrated as two wave fronts with dif-
ferent wavelengthsl1 and l2 colliding in the middle at the
starting time of the interaction in Fig. 7. The point of the
wave collision by the next two wave fronts will be shifted by
d toward the right sidesthe slower sourced becauseT1,T2.
Thus, the question of the determination of the invading ve-
locity is reduced to that of calculating the moving speed of
the wave collision points. More importantly, after some short
transient time, the expansion velocity should be decided by
the competition of the right spiral wave and the traveling
wave snot the left spiral waved.

Therefore we have

d = l2 − y2t = y2sT2 − td,

d = yit − li = yist − Tid, s8d

whered is the moving distance of the wave collision in time
interval t, andvi is the wave velocity of the invading wave. It
should be emphasized thatvi is different from sand much
larger thand V. Combining Eqs.s8d with V=d / t, we have

V = svi − v2d/ski + k2d, s9d

wherevi andv2 are the rotation frequencies of the invading
wave and spiral 2;ki andk2 are the wave numbers. The only
difference from Eq.s7d is that now the information of the
invading wave must be included. In fact,vi and ki are not
independent; they are linked by the dispersion relationship
fEq. s3dg. Even with synchronizationvi =v1, the expression
is still different from Eq.s7d ski Þk1d; without synchroniza-
tion, vi is determined by the coupling systems and can only
be obtained numerically. A direct outcome from Eq.s9d is
that the necessary condition for the formation of an invading
wave isvi .v2, not v1.v2; whereas ifvi =v2, the spiral
waves coexist.

To check the above results, the invading velocityV smag-

FIG. 7. Diagram of the point-source model.

FIG. 8. The invading velocityV vs mr. The numerical result
ssolid pointsd fits with the theoretical analysis from Eq.s9d ssolid
lined very well. Three types of dynamic behaviors are classified as I,
II, and III, corresponding to the phase-synchronized invading, non-
phase-synchronized invading, and coexistence, respectively.

FIG. 9. Log-log plot ofT vs mrc−mr. The power-law relation-
ship betweenT and mrc−mr, i.e., T~ smrc−mrdb, b=−1.62<−5/3,
andmrc=19.0, definitely confirms the coexistence behavior of a pair
of spiral waves out of the non-phase-synchronization invading
region.
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nitude onlyd vs mr is studied in Fig. 8, where a solid line
expressed by Eq.s9d fits very well with our direct numerical
computation ofV=L / s2Td, the solid circles.T is the time
interval of the invading wave arriving at the tip of the slower
spiral wave. Three distinct parts including the “V” shape of
the V value in the phase synchronization regionsfilled in
gray color and denoted by Id, suddenly jumping to a rela-
tively small value ofV in non-phase-synchronization repre-
sented by II, and the damping to zero in the no-invading area
indicated by III are clear. Another method with the compu-
tation of a short time local frequency variation also gives the
similar results.

It is worth mentioning that the transition to the coexist-
ence of a pair of spirals under sufficiently large frequency
mismatchflike the two stars in Figs. 2scd and 2sddg does
exist. To prove this point, in Fig. 9 the value ofT near the
critical parameter, for example,mr =19, has been studied, and
a fine scaling ofT~ smrc−mrdb with b=−1.62<−5/3 and
mrc=19.0 has been found. Formr ùmrc=19.0,T goes to in-
finity and the propagation of the invading wave into the new
domain is not possible any more, although the frequency
variation and the pattern disturbance in the slow spiral do-
main near the interaction boundary still happenfsee Figs.
5sbd, 4sad, and 4sbdg.

In conclusion, many of the experimentally important me-

dia are inhomogeneous and the studies of two spiral waves in
detail in the present work are significant. Some remarkable
results of this study are as follows.

s1d In the entire frequency mismatch space, three different
kinds of pattern formation including phase synchronization
induced invasion, non-phase-synchronous invasion, and the
coexistence of a pair of spirals, have been classified.

s2d The frequency discrepancy plays a dominant role in
the interaction: phase locking is not the exclusive mechanism
for the expansion of the invading wave and the frequency
difference alone cannot guarantee the invasion of the faster
spiral wave in space.

s3d A formula of the invading velocity from the point-
source model can explain all these dynamic behaviors in a
unified way.

All of the above results are robust and independent with
the samesor opposited chirality, and they can be simply ex-
tended to other cases of coupled antispiral wavesf25g. More-
over, clearly the results in this paper are constructively help-
ful for the possible development of methodssor techniquesd
of the control of spiral waves. A specific example is that of
spiral wave drifting induced by the stimulation of wave
trainsf29,30g, which has been proposed recently as one pos-
sible alternative approach to the treatment of heart attack.
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