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Phase synchronization of a pair of spiral waves
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The interaction of a pair of spiral waves with different independent rotation frequencies is studied. In a very
large frequency mismatch searching region, we observe three different pattern formation phen@mena:
phase-synchronization-induced invasion under a relatively small frequency mismatch, i.e., the spiral wave with
slower frequencylonger periodlis swept away by a traveling wave, which is induced and phase synchronized
by the faster spiral wavéb) the coexistence of two spiral waves at sufficiently large parameter mismatch; and
(c) an intermediate state, a non-phase-synchronous invasion, that is, similarly the slower spiral wave is swept
by an approximate planar wave, whose frequency, however, is intermediate between those of the faster and
slower waves. A point-source model is studied to analyze all these phenomena in a unified way.

DOI: 10.1103/PhysRevE.71.036212 PACS nuni)er05.45.Xt, 47.54+r

Spiral waves are probably the most intriguing patterns incally, two distinct phases of the interaction including un-
spatially extended systeni$—5]. They have been observed winding and drifting states have been obser(&4]. Initially,
in diverse systems, including biological systeasch as the the spiral with the faster rotation period intrudeswinds
cardiac muscle tissue and aggregating slime-mold )cellsinto the domain of the slower one; after the unwinding, the
physical systemgsuch as CO oxidation on platinumand  wave fronts from the faster spiral interact directly with the
the chemical Belousov-Zhabotinsky reaction, etc. Spirakenter of rotation of the slower one, producing a drifting of
waves have been actively investigated for several reasonghe slower one to move out of the observed domain. There-
one of which is their potential clinical relevance to cardiacfgre, the unwinding(or invading velocity and the drifting
arrhythmias, eSpeCially Ventricular ﬁbri”ation, Wh|Ch can in' Speed are the two most important Characteristics in the inter-
duce clinical death in only one minute and is the leadingactions. In an early seminal pagdi7], Krinsky and Agladze
cause of sudden heart death in industrialized countries. |Bointed out that the under]ying mechanism of the invasion is
general, most studies in these fields are focused on the foa'ue to thaphase Synchronization of autowave Sourdwi_
mation mechanisms, the instability of spiral waveeander-  ra| waves; that is, the spiral with the faster frequency can
ing spirals, or different breakup scenadid$—8|, the re-  cause the region in the vicinity of the interaction to be ex-
sponse of spiral waves under all kinds of externalgited with its frequency, i.e(phas¢ synchronized, and then
perturbationg9-11], such as the modulation by a periodic the action keeps on expanding to the entire region. As a
force pulse, localand global feedback, electric fields, and yesylt, spiral waves with unequal frequencies cannot coexist
noise, and the interactions of spiral waypattern selection  znd the most rapid one survives. This point of view has
Clearly the motivations of all of these studies are Closelysuccessfu”y exp|ained the Observed phenomena and a point_
connected with the possible application and control of spirakource model based on this argument also approximately
waves[10,11]. gives a formula for the unwinding time. Recently, the effect

A specific question about the interaction of multiple spiral of weak inhomogeneity on spiral wave dynamics was studied
waves—what will happen if several spiral waves are put intqyjthin the framework of the two-dimensional complex
one Spatial domain—has aroused gl’eat interest Continuousdinzburg-Landau equation description in a quasifrozen pa-
in the pattern formation communityl2-23. It is a basic  rameter regiorf20,21]. Just as in an excitable medium, the
question and is also of significance in our understanding oformation of a dominant spiral domain that suppresses other

spiral wave formation in chemical medium, cardiac tissuegpiral domains was observed in this type of oscillatory me-
etc. Until now, it has been well accepted that the interactioryjym.

between several Spiral waves with different frequencies often Until now, to our know'edge, most studies Only focused

leads to the conversion of the slower Spiral wave to the fa.st%n Observations with Sma” frequency mismatch, or Weak in-
frequency, and, thus, the domination of the fastest spiraghomogeneity, for example, the maximum frequency differ-
wave in the whole space. This pattern has been extensivelnce ratio is within a factor of 20% in Ref20]. Hence,
observed in various systems, such as an active chemical Mgome interesting questions involving the interaction of spiral
dium [17], a two-dimensional excitable medium with a pa- waves are still not answered: What will happen if the fre-
rameter gradientlg], self-interactions of a scroll ring in quency mismatch is Very |arge? Can one Spira' wave destroy
three dimensiongl9], and cardiac tissug22]. More specifi-  another as long as its frequengyeriod is larger(smalley?

Is phase synchronization the unigue mechanism for the faster

spiral destroying the slower one? In this paper, we intend to

*Electronic address: mzhan@chem.utoronto.ca address these problems.
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Our studies are based on the two-dimensional compley a) time=0 b) time=150

Ginzburg-Landau equatiofCGLE),

) i 2 i 2

- HXYA-(L+iaAPA+(L+IBVA, - (1)
which provides a universal description of extended systems
in the vicinity of a homogeneous Hopf bifurcation with the
complex variableA(x,y,t) being the order parameter at the |

bifurcation[1,5,20. In the case of a homogeneous medium
a andpg are real constants. It is well known that in an appre-

ciable region of thé«, 8) parameter space, a spiral wave can '
naturally form from fairly arbitrary small initial perturbations
from A=0. Here the scaling parametgris chosen as a real
constant, and it can be set to unity by an appropriate rescal
ing of Eq. (1) [20] through X~>X/\’,LL, t—t/u, A—uA.
Directly we have the scaling relation for the two system
characteristics: the rotation frequency and the wavelength o
the spiral waves,

o(u) = pwy, FIG. 1. The time evolution of R&A(x,y)] at u,=3.5. =3 is
fixed throughout this paper.

XES A 2) | _ T
a traveling wave(approximate planar wayewith a fixed
where wy and \q are for a single spiral wave at=1 with  wavelength, which is discernibly different from both the left
w(p) and\(u) for arbitrary u, correspondingly. For system and right original spiral waves. Two processes of the inter-
(1), it is easy to derive the dispersion relation includiag  action are very clear: unwindirgrig. 1(b)] and drifting[Fig.
_ _ 2 1(c)]. In these figures, the tip trajectory of the left spiral is
o(p) = ap+ (B~ a)k(n)?, ©) indicated by a solid line, whereas the nearly quiescent tip of

wherek(w) is the wave number of a planar wajg2,20. the right spiral is denoted by stars. Ultimately, a stable pat-

It has been pointed out that the lowest order effect of thdéern is established, characterized by the slower spiral being
inhomogeneity is the dependence of the local frequency andompletely transformed to a traveling wajgg. 1(d)].
growth rate of excitation on spa¢20]. In the present work, The above reconfirms the observation that spiral waves
a simple model is constructed with two stable spiral wavesvith unequal frequencies cannot coexist. We also compute
having different scaling parameters in the left and right sideshe eventual rotation frequencies of the left and right regions
of the domain, namelyu(x,y)=px, for x<L, and wu(Xx,y) having uniform values, denoted, respectively, by solid circle
=, for x>L with the size of the mediunk,=2L andL, and open square points in Fig@® as a function ofu(r).
=L. In this rectangular region, the interaction of two paraIIeI Figures 2b)-2(d) are three enlarged fields focusing on the
spirals will be investigated. Without losing any generality, specific regions. Actually, due to the regular motion of the
a=-0.4 andB=-1.5, which are the typical values in the coupled sites, periodic or quasiperiodic, these are very easy
normal outwardly rotating spiral wave regi¢f,24,25, are  to measure. Here, we borrow a mature technique in the field
chosen. In this paper, we mainly study systems with thedf chaotic phase synchronizati¢26—28 and define the av-
variation of u, and a fixed left scaling parametgr=3. The erage frequencyrotation humber of the spatial integration
CGLE system is integrated using the explicit Euler methodpoints as

with time stepAt=0.01, and the standard five-point approxi- T

: . . do(x,y) 1
mation for the Laplacian operator with the space step wxy)={ ——= ) =lim —f 6(x,y)dt (4)
=Ay=0.5. For each spiral wave, a 25&56 grid with no- dt 1= TJo

flux boundaries is utilized. The main computation procedureb d on the oh definiti f

is to form two stable spiral waves in the individual regions ased on the phase definiion 0

first, which can be conveniently realized by vertically inter- Im[A(X,y)]

secting initial conditions, and then to remove the obstacle in f(xy) = arcta RAGY)])’

the middle of the computation domain and switch the inter- '

action on. Our model here is constructed to maintain simplicwhere R@A(x,y)] and InfA(x,y)] are the real and imaginary

ity and generality, so the results in this paper are expected tparts ofA(x,y), respectively. The counterclockwise direction

be applicable to other more complex systems as well. is viewed as the normal positive rotation. For regular rotation
As a first exampleu,=3.5, only a little larger thany, of each computation point with a single cycling center as

=3, whose evolutions are depicted in Fig. 1, is selected. Imnalyzed in this paper, it works well. It has been mentioned

the initial time[Fig. 1(a)], two separated spiral waves spon- that the presence of a topological defébe spiral corgdoes

taneously form and the division between is quite even. In theot pose any problems because the defect, whose phase is

course of time, we observe that the right spiral wave excitesiot defined though, is located almost surely between the in-

©)
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FIG. 2. (a) The two end frequencies of the left and right sides in / ‘

the patterng, (solid circles andw, (transparent squarpgersusy,.
(b), (c), and(d) Three enlargements @#). In (b), the quantities of
w; and w; coincide, which means the global phase synchronization

has been established. (o) and (d), non-phase-synchronization ap- 1, , o\ hfigurels The two stars labels the two critical param-
pears withw, # w,. However, the wave invading phenomena haveeters

still been observed as _the frequeqcy of the invading wave is a little So far we know that the frequency of the induced invad-
larger than that of the invaded spiral wave. The two critical values

(stars of (a) are at the right sidey,=19.0 (¢), and the left one, MY Wave is crucial for its occupation of the slower spiral
1,=0.5(d) ' ' " domain. Several stable patterns for larger frequency differ-
,=0.5(d).

ences, u,=19.0 for Fig. 4a) and u,=0.5 for Fig. 4b),
tegration lattice site§28]. In fact, w(x,y) of a single spiral _clearly confirm this ppint. Althc_Jugh the_ frequency differe_nce
with homogeneous parameter sets shows the same sindke SO large and the intermediate region is so greatly influ-

magnitude with, however, the different sign as the spiral freenced by the coupling, two spiral waves definitely coexist
quency ofw(w) [in Eg. (3)]. and the induced wave front with the larger frequency cannot

Figure 2b) clearly shows that in the region of 15,  €xpand in the new territory. It should be stressed that here an
<6.1, the frequencies of the two spatial parts coincide, i.e.extremely long observation time 80 00€omparatively one
global phase synchronization has been established. In pa@! two orders of magnitude longer than in Figs. 1 andha@s
ticular, the end frequency of the coupled systems is decidefleen adopted. Similar phenomena are found for much larger
by the large one, and we see a huge jump not only in thet (x4 >19.0 or smalleru,(u, <0.5. On the contrary, other
region of 35w < u,<6.1, but also in 3%, >, =1.5. Note Stable patterns with different,, x,=1.0 [Fig. 4(c)] and y,
that, for u=1, wy=0.4188, the dashed lines indicate the ini-
tial frequencies, the frequencies for the individual spiral @)
waves without coupling, which are located a}=uwq
=3wy and w, = u,wq, respectively.

Now we may ask, what will occur if, stays out of the
phase synchronization region? With a similar qualitative be-
havior as Fig. 1, two phases of interaction, unwindjiFy.
3(b)] and drifting [Fig. 3(c)], are exemplified foru,=8.0.
Because of the large discrepancy of the two scaling param
eters, the differences of the wavelengths and the variable
magnitudegdifferent gray valuesbetween the two sides are  (¢) u=1
visible. In the end, the systems are built with two compo-
nents of patterns: the unchanged right spiral wave and arr
approximate planar wave on the other sjéég. 3(d)]. Ac-
cording to the non-phase-synchronous feature in Fig), 2
o, # o, for u,=8.0, it seems very strange that the stable trav-
eling wave pattern in Fig. 3 is still possible. A closer look
[see Fig. Pc) at 6.2<u,<19.0 and Fig. &) at 0.5<
<1.4] clearly indicates that although the chosen frequency
of the invading wave is different from that of the faster spi-
ral, it is still a little larger than that of the slower one, which  FIG. 4. The eventual stable patterns for different parameters:
will be invaded(dots are located above the dashed lines inu,=19 (a), 0.5(b), 1.0(c), and 3(d).

FIG. 3. Similar to Fig. 1 aj,=8.0.

n=19 (b) 1,=0.5
i B
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He possible. It is useful to illustrate this by studying the wave-

length of the established invading wave, shown by solid

FIG. 5. (a) The frequency division line for two asymptotic fre- circles in Fig. 6. The two solid lines are the theoretical values
quenciesy andw; at u, =8 [Fig. 3(d)]. In fact, itis a curve. Ateach o N\, and \, without coupling. Hereng=49.25,\,=\/ \§
side,w(X,y) has a homogeneous value. Specifically, the intersection_.28_44’ and\, =X,/ v’;- In the synchronization region, the
position of the division line withy=L/2=64,V, is chosen. Under wavelength of the invading wave is smaller than both,
this paramete, > w,, the division line has been moved into the and\, (except for the extreme point, = =3.0, \; =\, =\,
slow spiral domain; thus” < L. (b) The divided positior¥ vs ;. where the formation of invading W(;lve is no,t [:IJOS;)bIE;
fact, with the phase synchronization mechanisop=w)), it
is easy to predict the wavelength of the induced planar wave
hthrough the dispersion relatidieqg. (3)]—this is shown as
the dashed line, which fits the computational results very
well. It is well known that the minimum wavelengit,;, (or
maximum frequencysustained by a specific medium to emit
a wave is determined by the system parameters. Here indeed
Amin @lso controls the synchronization widitthe phase-
locking parameter rangeOutside of the synchronization re-
gion, the stable invading wave appears with a new aspect of
. ; AT ; wavelength, i.e.\; is larger than that of the faster spiral
.:8 [Fig. 3(“)] IS exh|b|ted_|n Fig. @' Itis a curve now and wave and smaller than that of the slower one. Two extreme
it has shifted from the middle vertical dash linesL =128, ) o5 areu,=19.0u,=0.5 in the right(left) side (stars in
Into Ll .SI.OW splral_ wave do_mam. Specmcally,. b Intersec'Fig. 6). Here we should mention that for some other param-
tion position of this line withy=L/2=64, ¥, is chosen, .- sets(different (a, 8)], two phases without non-phase-

whose relation withu, is displayed in Fig. &). Unlike in : . o
global phase synchronizatighomogeneous in the whole do- synchronous invasion have also been found. In principle, the
reason is that the coupled system does not have enough pa-

main and without a divisionin the phase-locking r:elgion, 2 rameter range fog, in the synchronization region to arrive
) . ) .
small expansion of the faster spiral to the slower & at A\, under the current competition status between the

tion from the original division dashed line atL=128) is . .
seen everywhere even including the coexistence state regio%r.owth p_ower(,g ), the strengt_h of the _Iocal nonlinearity),
This indicates that, weaker than the global synchronizationf,a‘nd the intensity of th? spatl'al couplirig). .

partial synchronization, characterized by a two-value distri- From the above d|squ35|on,_ we have obtained a c_Iear
bution (homogeneous in each prend the extension of the physical picture of the interaction between the two spiral

large frequency field, is established out to the phase-lockin aves. To prqceed furthgr, it is crucial to |nvest|ga_te the
region vading velocity quantitatively. Actually for an approximate

The stable patterns at differept tell us that frequency analysis with a point-source model7] it has been derived

locking is only a sufficient condition, not a necessary oneith the form

for the formation of the_invading_ wave. More generally, even V=uol-TyT,)2, (6)

if the frequency of the induced invading wave is only a little

bit higher than that of the slower spiréhot synchronous whereT;<T, are the periods of the spiral waves, ands
with the faster ong the expansion of the planar wave is still the wave velocity. Obviously the wave velocities in different

=3.0[Fig. 4d)], show the left spiral wavéstill fastep killing
the right spiral and the coexistence of two spiral waves wit
the same frequenciég, = u,=3.0), respectively. The appear-
ance of a new small spiral wave near the center in Hd) 4
is simply due to the topological defect between the two ini-
tial spirals.

It should be highlighted here that the values«pfand w,
in Fig. 2 are the two asymptotic quantities @x,y) in the
left and right sides, in whicln(x,y) has nearly uniform val-
ues. As an example, the frequency division line unger
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FIG. 7. Diagram of the point-source model.
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media are not distinguished. Recently, in studies of several 0-00 5 10 15 20
spiral waves in the quasifrozen parameter region, the rela- u
r

tionship of the domain wall velocitithe same as the invad-

ing velocity in our paperis given[20] by FIG. 8. The invading velocityy vs w,. The numerical result

(solid pointg fits with the theoretical analysis from E®) (solid

line) very well. Three types of dynamic behaviors are classified as |,
I, and Ill, corresponding to the phase-synchronized invading, non-
phase-synchronized invading, and coexistence, respectively.

V= (01~ @)l (kg + k), (7
wherew; andw, are the spiral frequenciek, andk, are the
wave vectors, and the reference positive direction points to-
ward spiral 2. If the discrepancy betwek&pandk, is not
considered, Eq(6) is recovered from Eq.7) naturally.

We now know that a frequency difference of the spiralyherew, andw, are the rotation frequencies of the invading
waves cannot always induce the invasion. Thus, the expregyave and spiral 2k andk, are the wave numbers. The only
sions in both(6) and(7) cannot explain the observations in gifference from Eq.7) is that now the information of the
the entire parameter region. Here we restudy a point-sourGgyading wave must be included. In faes; andk; are not
model with the sketch map shown in Fig. 7. Just as in Refingependent; they are linked by the dispersion relationship
[17] and the numerical experiment above, two spiral waveggq. (3)]. Even with synchronizatiom; =w;, the expression
are generated at the left and right sides, dnekT,. The g sill different from Eq.(7) (k, #ky); without synchroniza-
essential point in the point-source model is that the two spigion , is determined by the coupling systems and can only
ral waves can be simplified as two-point sources situated afe ohtained numerically. A direct outcome from H8) is

the tip points 1 and 2, respectively, with emissions of planagnat the necessary condition for the formation of an invading
waves having the same wavelength and.freq.uency as the SRlrave is w; > wy, NOt w;> w,; whereas ifw;=w,, the spiral
ral waves. Indeed, if the two sources emit a first wave simulyyaves coexist.

taneously, these waves will collide and annihilate midway 1q check the above results, the invading veloditymag-
between the sources, illustrated as two wave fronts with dif-
ferent wavelength&,; and \, colliding in the middle at the
starting time of the interaction in Fig. 7. The point of the
wave collision by the next two wave fronts will be shifted by
6 toward the right siddthe slower sourgebecauser; <T,. 1 AN
Thus, the question of the determination of the invading ve- ]
locity is reduced to that of calculating the moving speed of ] AN
the wave collision points. More importantly, after some short 10000 - N
transient time, the expansion velocity should be decided by ] *
the competition of the right spiral wave and the traveling ] ‘o
wave (not the left spiral wave 1 o
Therefore we have 1 e

V= (o~ 0l (ki + k), (9)

100000 -

d=Ny—ut= (T, - 1), 1000 - .

Hee™ Hr

S=ut-N\=yt-T), (8)

FIG. 9. Log-log plot of T vs w,.—u,. The power-law relation-
whereé is the moving distance of the wave collision in time ship betweerT and e~ i.e., T (ue—u,)?, f=-1.62~-5/3,
intervalt, andv; is the wave velocity of the invading wave. It andu,.=19.0, definitely confirms the coexistence behavior of a pair
should be emphasized that is different from (and much  of spiral waves out of the non-phase-synchronization invading
larger than V. Combining Eqs(8) with V=4/t, we have region.
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nitude only vs u, is studied in Fig. 8, where a solid line dia are inhomogeneous and the studies of two spiral waves in
expressed by Ed9) fits very well with our direct numerical detail in the present work are significant. Some remarkable
computation ofV=L/(2T), the solid circles.T is the time results of this study are as follows.

interval of the invading wave arriving at the tip of the slower (1) In the entire frequency mismatch space, three different
spiral wave. Three distinct parts including the *V" shape of inds of pattern formation including phase synchronization

the V value in the phase synchronization regidilled in  j,qced invasion, non-phase-synchronous invasion, and the
gray color and denoted by, Isuddenly jumping to a rela- coexistence of a pair of spirals, have been classified.

tively small value ofV in non-phase-synchronization repre- 2) The f i | domi e i
sented by I, and the damping to zero in the no-invading area (2) The frequency discrepancy plays a dominant role in

indicated by Il are clear. Another method with the compu-the interaction: phase locking is not the exclusive mechanism
tation of a short time local frequency variation also gives theor the expansion of the invading wave and the frequency
similar results. difference alone cannot guarantee the invasion of the faster
It is worth mentioning that the transition to the coexist- Spiral wave in space.
ence of a pair of spirals under sufficiently large frequency (3) A formula of the invading velocity from the point-
mismatch[like the two stars in Figs. () and 2d)] does source model can explain all these dynamic behaviors in a
exist. To prove this point, in Fig. 9 the value ®fnear the unified way.
critical parameter, for examplg, =19, has been studied, and  All of the above results are robust and independent with
a fine scaling ofT o (u,.—u,)? with B=-1.62~-5/3 and the sameor opposite chirality, and they can be simply ex-
c=19.0 has been found. Fat, = u,.=19.0,T goes to in- tended to other cases of coupled antispiral wa2&& More-
finity and the propagation of the invading wave into the newover, clearly the results in this paper are constructively help-
domain is not possible any more, although the frequencyul for the possible development of metho@s techniques
variation and the pattern disturbance in the slow spiral doef the control of spiral waves. A specific example is that of
main near the interaction boundary still hapfeee Figs. spiral wave drifting induced by the stimulation of wave
5(b), 4(a), and 4b)]. trains[29,30, which has been proposed recently as one pos-
In conclusion, many of the experimentally important me-sible alternative approach to the treatment of heart attack.
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